Как определяется линейность модели

Линейными моделями считают такие, для которых выполняется принцип суперпозиции: реакция на суммарное входное воздействие является суммой реакций на каждое из отдельных входных воздействий, составляющих это суммарное.
Такое определение охватывает как статические, так и динамические модели. Применительно к линейным моделям можно также утверждать, что их выход пропорционален входу: чем больше сигнал на входе, тем больше он на выходе. При этом отношение величины выходного сигнала в установившемся режиме к величине входного является коэффициентом пропорциональности.
Так, динамическое уравнение

является линейной моделью (поскольку и сами переменные x(t), y(t), и их производные – в данном случае y'(t) – входят в уравнение в первой степени). Из этого уравнения можно легко получить статическую модель (статическую характеристику), приравняв производные нулю (так как статическая характеристика – это зависимость выхода от входа в установившемся режиме, т.е. в таком режиме, когда закончены все переходные процессы, а значит, и все изменения переменных). Итак, получаем: 4y = 5x, или y = 1,25x. Коэффициент пропорциональности в данном случае равен 1,25.
Однако линейные и нелинейные модели используются не только в технике. Например, в фольклоре разных народов существуют поговорки, изречения, передающие народную мудрость, которые также можно рассматривать в качестве семантических моделей.
Примеры линейных моделей: 1) «Чем дальше в лес, тем больше дров»; 2) «По доходу и расход».

Рис. 1. Линейные семантические модели
В двух первых моделях пропорциональная статическая зависимость выхода от входа проиллюстрирована на рис. 1.
Примеры нелинейных моделей: 1) «Мал золотник, да дорог»; 2) «Велика фигура, да дура». В двух последних моделях нелинейность выражается в обратной пропорциональности выхода входу и может быть отображена на графике статической характеристики (рис. 2).

Рис. 2. Нелинейные семантические модели
Разумеется, что как линейные, так и разнообразные нелинейные модели находят применение и в других областях. Так, например, в биологии известно, что чем больше вес животного, тем больше пищи оно употребляет для поддержания энергетического баланса (линейная модель) или чем меньше размеры млекопитающего, тем выше у него частота пульса (нелинейная модель) и т.п.
Линейные модели с помощью линейных же преобразований можно трансформировать в другие линейные модели. Например, от модели в виде линейного дифференциального уравнения путем применения линейного интегрального преобразования Лапласа можно перейти к модели в виде передаточной функции.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.